پیش بینی مصارف گاز خانگی و تجاری برای یک دوره پنج ساله شهر اصفهان با استفاده از شبکههای عصبی
نویسندگان
چکیده مقاله:
بخشهای خانگی و تجاری بیشترین سهم مصارف گاز طبیعی در کشور را به خود اختصاص دادهاست. بنابراین، پیشبینی میزان مصارف این دو بخش برای شرکت ملی گاز ایران بسیار حائز اهمیت است. در این مقاله، برای مصارف خانگی و تجاری گاز طبیعی شهر اصفهان ساختار مناسبی از مدل شبکه عصبی انتخاب و طراحی شده است. برای یافتن یک ساختار مناسب شبکه عصبی، سه ساختار متفاوت با نامهای دینامیک، هرس کامل و شبکه شعاع براساس تابع بررسی شده است. دادههای واقعی مصارف گاز 10 سال (1381 تا 1390) برای پیشبینی مصارف (1391 تا 1395) استفاده شده است. به منظور پیشبینی مصارف خانگی و تجاری گاز طبیعی، متغیرهای مستقل جمعیت، دما، تعداد مشترکین و قیمت گاز انتخاب شدهاند. ساختارهای شبکه عصبی با یکدیگر و با سایر روشهای سنتی پیشبینی از جمله رگرسیون و سریهای زمانی مقایسه گردید. نتایج حاکی از آن است که ساختار منتخب هرس کامل مدل شبکه عصبی برای این دادهها از سایر ساختارها و مدلهای پیشبینی سنتی کارآمدتر و دقیقتر است و این مدل تا سال 1395 برای بخش خانگی افزایش مصرف و برای بخش تجاری کاهش در مصرف گاز طبیعی شهر اصفهان را پیشبینی کرده است. براساس بررسیهای انجام شده، تاکنون پژوهشی برای پیشبینی مصارف گاز طبیعی خانگی و تجاری شهر اصفهان با مقایسه بین ساختارهای مختلف طراحی مدل شبکه عصبی و انتخاب بهترین ساختار، صورت نگرفته است.
منابع مشابه
پیش بینی مصارف گاز خانگی و تجاری برای یک دوره پنج ساله شهر اصفهان با استفاده از شبکه های عصبی
بخش های خانگی و تجاری بیشترین سهم مصارف گاز طبیعی در کشور را به خود اختصاص داده است. بنابراین، پیش بینی میزان مصارف این دو بخش برای شرکت ملی گاز ایران بسیار حائز اهمیت است. در این مقاله، برای مصارف خانگی و تجاری گاز طبیعی شهر اصفهان ساختار مناسبی از مدل شبکه عصبی انتخاب و طراحی شده است. برای یافتن یک ساختار مناسب شبکه عصبی، سه ساختار متفاوت با نام های دینامیک، هرس کامل و شبکه شعاع براساس تابع ب...
متن کاملانتخاب سناریوی مناسب برای پیش بینی تقاضای انرژی بخش خانگی-تجاری با استفاده از الگوریتم بهینهسازی انبوه ذرات
در دهههای اخیر، انرژی در کنار سایر عوامل تولید نقش تعیینکنندهای در رشد اقتصادی کشورها داشته و اهمیت آن همچنان رو به افزایش است. رشد اقتصاد جهان و روند صنعتی شدن موجب افزایش تقاضا و مصرف انرژی شده است. از سوی دیگر از میان بخشهای مصرفکنندهی انرژی، بخش خانگی– تجاری یکی از پرمصرفکنندهترین بخشهای تقاضای انرژی است. بطوریکه بیش از 34% از میزان مصرف انرژی را نسبت به سایر بخشها به خود اختصا...
متن کاملتوسعۀ یک مدل خبره برای پیش بینی تقاضای آب شهری با استفاده از شبکۀ عصبی مصنوعی، نمونه موردی شهر ایلام
مدیریت و تأمین آب شهری، همواره یکی از دغدغه های اصلی مدیران و برنامه ریزان شهری بوده است. شناخت تقاضای آب شهری و عوامل مؤثر بر آن، از مولفه های مهم در مدیریت و کنترل مصرف آب شهری محسوب می شود. در تحقیق حاضر مدلی خبره برای پیش بینی تقاضای آب شهری ایلام با استفاده از شبکۀ عصبی مصنوعی توسعه یافته است. مدل خبره، مبتنی بر عوامل مؤثری است که از درآمد سالانه ( x1)، ناحیه مصرف(x2)...
متن کاملتخمین تابع تقاضای گاز طبیعی مصارف خانگی شهر تهران
انرژی یکی از منابع حیات بشری و عامل تداوم آن است . گاز طبیعی به لحاظ دارا بودن مزایای فراوان و تامین 43 درصد از انرژی اولیه کشور، ازاهمیت و جایگاه ویژه ای در میان سایر منابع انرژی برخوردار است.تحلیل بازار انرژی به طور عام و تقاضای انرژی به طور خاص در شناخت نقش انرژی و کاربرد آن در مناطق مختلف کشور از اهمیت بالایی برخوردار است. در این مطالعه ، تقاضای گاز طبیعی به عنوان یکی از حاملان انرژی در بخش...
متن کاملپیش بینی رفتار مشتریان با استفاده از تکنیک شبکههای عصبی مصنوعی
امروزه روش های کمی، به یکی از مهم ترین ابزارهای پیش بینی برای اخذ تصمیمات و سرمایه گذاریهای کلان در بازارها تبدیل شده اند. دقت پیش بینی، یکی از مهم ترین فاکتورهای انتخاب روش پیش بینی است؛ شبکه های عصبی مصنوعی، برنامه های کامپیوتری منعطفی هستند که در سطح گسترده ای برای پیش بینی، با درجه بالایی از دقت به کار برده می شوند. امروزه میتوان با استفاده از تکنیک های داده کاوی و شبکه های عصبی به بررسی و ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 7 شماره 1
صفحات 247- 262
تاریخ انتشار 2016-03-20
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023